7 research outputs found

    Scalable machine learning-assisted clear-box characterization for optimally controlled photonic circuits

    Full text link
    Photonic integrated circuits offer a compact and stable platform for generating, manipulating, and detecting light. They are instrumental for classical and quantum applications. Imperfections stemming from fabrication constraints, tolerances and operation wavelength impose limitations on the accuracy and thus utility of current photonic integrated devices. Mitigating these imperfections typically necessitates a model of the underlying physical structure and the estimation of parameters that are challenging to access. Direct solutions are currently lacking for mesh configurations extending beyond trivial cases. We introduce a scalable and innovative method to characterize photonic chips through an iterative machine learning-assisted procedure. Our method is based on a clear-box approach that harnesses a fully modeled virtual replica of the photonic chip to characterize. The process is sample-efficient and can be carried out with a continuous-wave laser and powermeters. The model estimates individual passive phases, crosstalk, beamsplitter reflectivity values and relative input/output losses. Building upon the accurate characterization results, we mitigate imperfections to enable enhanced control over the device. We validate our characterization and imperfection mitigation methods on a 12-mode Clements-interferometer equipped with 126 phase shifters, achieving beyond state-of-the-art chip control with an average 99.77 % amplitude fidelity on 100 implemented Haar-random unitary matrices

    Perceval: A Software Platform for Discrete Variable Photonic Quantum Computing

    Get PDF
    We introduce Perceval, an evolutive open-source software platform for simulating and interfacing with discrete variable photonic quantum computers, and describe its main features and components. Its Python front-end allows photonic circuits to be composed from basic photonic building blocks like photon sources, beam splitters, phase shifters and detectors. A variety of computational back-ends are available and optimised for different use-cases. These use state-of-the-art simulation techniques covering both weak simulation, or sampling, and strong simulation. We give examples of Perceval in action by reproducing a variety of photonic experiments and simulating photonic implementations of a range of quantum algorithms, from Grover's and Shor's to examples of quantum machine learning. Perceval is intended to be a useful toolkit both for experimentalists wishing to easily model, design, simulate, or optimise a discrete variable photonic experiment, and for theoreticians wishing to design algorithms and applications for discrete-variable photonic quantum computing platforms

    Scalable machine learning-assisted clear-box characterization for optimally controlled photonic circuits

    No full text
    Photonic integrated circuits offer a compact and stable platform for generating, manipulating, and detecting light. They are instrumental for classical and quantum applications. Imperfections stemming from fabrication constraints, tolerances and operation wavelength impose limitations on the accuracy and thus utility of current photonic integrated devices. Mitigating these imperfections typically necessitates a model of the underlying physical structure and the estimation of parameters that are challenging to access. Direct solutions are currently lacking for mesh configurations extending beyond trivial cases. We introduce a scalable and innovative method to characterize photonic chips through an iterative machine learning-assisted procedure. Our method is based on a clear-box approach that harnesses a fully modeled virtual replica of the photonic chip to characterize. The process is sample-efficient and can be carried out with a continuous-wave laser and powermeters. The model estimates individual passive phases, crosstalk, beamsplitter reflectivity values and relative input/output losses. Building upon the accurate characterization results, we mitigate imperfections to enable enhanced control over the device. We validate our characterization and imperfection mitigation methods on a 12-mode Clements-interferometer equipped with 126 phase shifters, achieving beyond state-of-the-art chip control with an average 99.77 % amplitude fidelity on 100 implemented Haar-random unitary matrices

    Perceval: A Software Platform for Discrete Variable Photonic Quantum Computing

    Get PDF
    We introduce PercevalPerceval, an open-source software platform for simulating and interfacing with discrete-variable photonic quantum computers, and describe its main features and components. Its Python front-end allows photonic circuits to be composed from basic photonic building blocks like photon sources, beam splitters, phase-shifters and detectors. A variety of computational back-ends are available and optimised for different use-cases. These use state-of-the-art simulation techniques covering both weak simulation, or sampling, and strong simulation. We give examples of PercevalPerceval in action by reproducing a variety of photonic experiments and simulating photonic implementations of a range of quantum algorithms, from Grover's and Shor's to examples of quantum machine learning. PercevalPerceval is intended to be a useful toolkit for experimentalists wishing to easily model, design, simulate, or optimise a discrete-variable photonic experiment, for theoreticians wishing to design algorithms and applications for discrete-variable photonic quantum computing platforms, and for application designers wishing to evaluate algorithms on available state-of-the-art photonic quantum computers
    corecore